

The effect of estriol on the production of alpha-fetoprotein by the liver in adult mice

Masahiko Kotani ¹, Hirohiko Fujii ¹, Kiminari Terao ¹, Takeshi Hayama ¹, Hiroko Taga ², and Hidematsu Hirai ³

¹ Department of Anatomy, Kumamoto University Medical School, 2-2-1, Honjo, Kumamoto 860, Japan

³ Tumor Laboratory, Higashitokura, Kokubunji, Tokyo 185, Japan

Summary. A single intraperitoneal injection with a 10 mg estriol (E₃) in aqueous suspension induced a large and prolonged elevation of serum alphafetoprotein (AFP) in adult mice. E₃ also raised the mitotic activity of hepatocytes in the absence of liver injury. Although both the AFP concentration and hepatocyte proliferation reached the peak on day 5 after E₃ administration, a high level (about 12500 ng/ml) of serum AFP persisted for a long period after hepatocyte proliferation declined. Five mg E₃ showed a remarkable threshold effect on AFP elevation and 3 mg E₃ on hepatocyte proliferation. Immunohistochemical studies indicated AFP production by hepatocytes in adult mice after the E₃ administration.

Key words: Alpha-Fetoprotein – Estrogen – Liver – Mouse – Adult

Introduction

alpha-Fetoprotein (AFP) is a serum protein produced mainly by hepatocytes in the fetal and neonatal stages. The AFP level in adults is normally very low (Abelev 1971; Ruoslahti and Seppälä 1971) but AFP is produced in association with the hepatocyte proliferation induced by partial hepatectomy or hepatotoxic chemicals (see for example Abelev 1971; Sell et al. 1974; Smuckler et al. 1976; Watanabe et al. 1976). Recently, we have reported that a large dose of estrogens provokes active hepatocyte proliferation in adult mice (Fujii et al. 1985; Fujii and Kotani 1986). The aim of the present work is to determine whether such a large dose of estrogens induces AFP production, associated

with the hepatocyte proliferation. Since estriol (E_3) was the best steroid in terms of inducing hepatocyte proliferation in the mouse (Fujii et al. 1985), E_3 was chosen to examine the effectiveness of the production of AFP in this study.

Materials and methods

Male (C57BL/6 \times DBA/2) F_1 mice, 10 weeks old and approximately 28 g in body weight, were purchased from the Shizuoka Agricultural Cooperative Association for Laboratory Animals, Hamamatsu. They were maintained in our laboratory under conventional conditions and fed a standard laboratory chow.

Mice were injected intraperitoneally with 0.1–10 mg E_3 in 1.0 ml aqueous suspension (Estriel, Mochida Pharm. Co., To-kyo, Japan). Control mice were given 1.0 ml medium (50 mg arabic gum and 1 mg polysolvent 80 in 100 ml isotonic saline) only, without E_3 , in the same manner. The E_3 concentration was measured on a pooled serum from 3–5 animals at each time point by radioimmunoassay in the Kitazato-Bristol Laboratories, Kanagawa.

Blood was withdrawn from the inferior vena cava under ether anesthesia and allowed to clot for 2 h at 37° C. The serum was stored at -20° C until assayed. Purified mouse AFP and anti-mouse AFP were prepared by the method using immuno-adsorbent columns of Sepharose described elsewhere (Nishi and Hirai 1972; Taga 1983). Serum AFP concentrations were determined by so-called rocket electrophoresis (Taga 1983).

Colchicine was injected subcutaneously at a dose of 0.1 mg/ 100 g body weight 6 h before sacrifice. Small pieces of the liver from 3 mice in each time point after E₃ administration were fixed in Carnoy's fluid, embedded in paraffin, sectioned serially at 6 µm-thickness and stained with haematoxylin and eosin (HE) or methyl-green/pyronin (MGP). The ratio of the number of hepatocytes in the metaphase of mitosis to 5000 hepatocytes was calculated in each animal.

Cellular localization of AFP was studied by the immunoperoxidase reaction on the tissue sections. Small pieces of liver (about $2 \times 2 \times 2$ mm) were fixed in Zamboni's fluid (Stefanini et al. 1967) for 2–3 days and embedded in paraffin. Serial sections at 6 μ m-thickness were dewaxed, hydrated and rinsed in distilled water. After inhibition of endogenous peroxidase activity by a treatment with periodic acid and sodium borohydride according to a method described by Heyderman and Neville (1977), the sections were treated with rabbit anti-mouse AFP

² Immunology Laboratory, The Third Department of Internal Medicine, Nihon University Medical School, Kanda-Surugadai, Chiyoda-ku, Tokyo 101, Japan

serum at 1/100 dilution for 40 min at room temperature, washed throughly with PBS, treated with swine anti-rabbit IgG (Dakopatts, Copenhagen, Denmark) conjugated with horseradish peroxidase for 30 min and washed again. Peroxidase activity in the sections was located after reaction with 3,3'-diaminobenzidine tetrahydrochloride and $\rm H_2O_2$ at room temperature. The sections were counterstained with haematoxylin.

Results

E₃ was not detected in the serum of the control mice that received the vehicle only. In experimental mice, the serum E₃ concentration increased greatly soon after the intraperitoneal injection with a 10 mg E₃ suspension and fell gradually with time (Fig. 1). However, a considerable E₃ concentration was still observed at the end of this experiment, 30 days after E_3 administration. The time course of hepatocyte proliferation and serum AFP concentration after the 10 mg E₃ administration is shown in Fig. 2. The mitotic index of the hepatocytes rose sharply from 3 days after the administration of 10 mg E₃ and reached its peak on day 5. After the peak on day 5, the mitotic index fell rather rapidly during the next 5 days and returned to normal by day 15. The serum AFP concentration increased from day 3 (2060 ng/ml ± 720 ng/ml) after the 10 mg E₃ administration and reached a high level $(12500 \text{ ng/ml} \pm 1000 \text{ ng/ml})$ on day 5. This high level of AFP persisted to day 15, while the proliferation of hepatocytes ceased by day 15. There was a sharp drop from 12100 ng/ml± 133 ng/ml to $4150 \text{ ng/ml} \pm 3920 \text{ ng/ml}$ between day 15 and day 20. Small amounts of AFP (110 ng/ $ml \pm 20$ ng/ml) were still detected on day 30. The effect of different doses of E₃ on the hepatocyte proliferation and serum AFP concentration 5 days after the E_3 administration is shown in Table 1. Three mg E₃ was a critical threshold dose which sparked off hepatocyte proliferation. No significant differences between 3–10 mg E₃ in the mitotic index were found. On the other hand, 5 mg of E₃ showed a remarkable threshold effect on the elevation of the serum AFP level.

Histologically, the cytoplasm of the hepatocytes showed prominent basophilia in sections stained with HE and pyroninophilia in sections stained with MGP in 3 days after the administration of 10 mg E₃. No necrotic hepatocytes were found by light microscopy throughout this study. Immunoperoxidase staining on tissue sections of the liver 5 days after the 10 mg E₃ administration revealed many AFP positive hepatocytes (Fig. 3a), found scattered or in small groups. Among the ordinary sized AFP positive hepatocytes, smaller hepatocytes containing AFP were frequently ob-

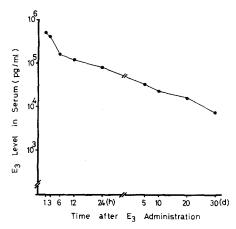


Fig. 1. Time course of serum E_3 concentration after a single intraperitoneal injection with 10 mg of a E_3 suspension. Each point represents the value measured on a pooled serum from 3-5 animals. h = hours; d = days

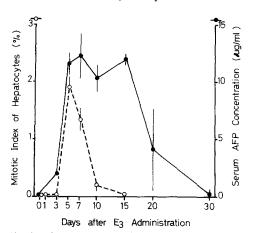
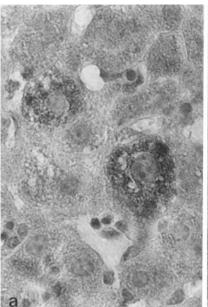


Fig. 2. Time course of the mitotic index of hepatocytes and AFP concentration after the administration of 10 mg E₃. Each point represents a mean value of 3–6 animals and vertical bar shows standard error

Table 1. The mitotic index (MI) and serum α -fetoprotein (AFP) concentration 5 days after the E_3 administration


Dose of E ₃ (mg)	MI (%)	AFP (ng/ml)
()	0.01 ± 0.03	28 ± 2°
ì	0.71 ± 0.25	373 ± 59
3	2.51 ± 0.25	580 ± 197
5	2.07 ± 0.15	6300 ± 1300
10	2.10 ± 0.20	12500 ± 1000

^a Mean ± SE (3–6 mice)

served (Fig. 3b). Their nuclei were often oval in shape. No definitely positive hepatocytes were found in the control mice.

Discussion

The reproductive tract is the major target organ for estrogens. However, large doses of estrogens

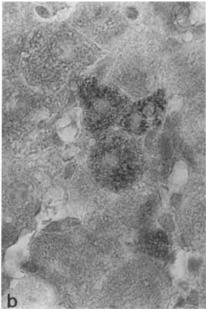


Fig. 3a, b. Immunoperoxidase staining of AFP in the liver of a adult mouse on day 5 after the administration of 10 mg E₃. a Two hepatocytes containing AFP are seen; b Three smaller AFP positive hepatocytes compared to ordinary sized hepatocytes in Fig. 3a are found in a group. Their nuclei are oval. × 700

have effects on the lymphoid tissues and the reticuloendothelial system, resulting in involution of the thymus (Dougherty 1952), stimulation of the phagocytic activity of macrophages (Nicol et al. 1964), and inhibition of immune responses (Ezaki et al. 1982). The present study reported that the exposure of adult mice to a large dose of 10 mg E₃ induced a highly elevated serum concentration of AFP. This level was about 10-fold higher in comparison with the maximum serum concentration produced by partial hepatectomy (Watanabe et al. 1976). It was also 2- to 3-fold higher than that produced after treatment with CCl₄ (Watanabe et al. 1976). Ten mg E₃ simultaneously induced an active proliferation of hepatocytes. The elevation of serum AFP concentration was grossly associated with the proliferation of hepatocytes, but not as precisely as reported by other investigators in hepatectomy or chemically induced liver necrosis (Alpert 1972; Engelhardt et al. 1976; Smuckler et al. 1976; Watanabe et al. 1976; Sell and Becker 1978). A rise of serum AFP concentration was detectable prior to the onset of hepatocyte proliferation and a high serum AFP persisted for a long period after hepatocyte proliferation declined. Such prolonged elevation of AFP is a characteristic feature of E₃ treatment in comparison with that which occurs in hepatic injury. It should be noted that E₃ induces AFP elevation and hepatocyte proliferation in the absence of liver injury by light microscopy. Three mg E₃ showed a remarkable threshold effect on hepatocyte proliferation and 5 mg E_3 on AFP elevation.

Immunohistochemical studies provide clear evidence that AFP can be produced by hepatocytes in adults after E₃ administration. We have previously reported the appearance of many haemopoietic foci in the adult mouse liver after the administration of 10 mg E₃ (Hayama et al. 1983). Granulocyte-macrophage colony-stimulating activity in the serum of E₃-treated adult mice has also been reported (Hayama et al. 1985). Changes such as the proliferation of hepatocytes, AFP production by hepatocytes and hepatic haemopoiesis, in the adult liver after the E₃ administration may represent a transient reversion to the fetal liver. These changes may also suggest a possible physiological role for the high level of E₃ in human embroys (Roy and Brown 1960; Diczfalusy 1969).

However, there is general agreement that elevated serum AFP in adults may be associated with hepatocellular carcinoma in animals (Abelev et al. 1963; Taga 1983) and man (McIntire et al. 1972; Ruoslahti et al. 1974). The elevated level of serum AFP concentration after E₃ administration in this study was as high as the AFP concentration in some hepatoma-bearing animals (Watabe et al. 1972; Sell and Morris 1974; Taga 1983). The problem of whether elevated serum AFP after E₃ administration is an indicator of potential liver malignancy remains to be established. The present study demonstrated an appearance of small AFP positive hepatocytes with oval nuclei in the liver 5 days after the 10 mg E₃ administration. An appearance of the so-called oval cells which are responsible for AFP production has been reported in the early stages of carcinogenesis with azo-dye and 2-acetylaminofluorene (Dempo et al. 1975; Tchipysheva et al. 1977) or with N-nitrosomorpholine (Kuhlmann 1978). Cirrhosis in humans, which is considered to be regarded as a premalignant condition, is often accompanied by elevated estrogen concentrations (Kley et al. 1976) and by elevated AFP concentrations (Ruoslahti et al. 1974; Okuda et al. 1975; Lehmann 1976). The present study may provide a new approach in solving problems related to the possible correlation between estrogen and AFP production in carcinogenesis. There is no available information, to our knowledge, about the production of AFP by liver-cell adenoma following long-term use of oral contraceptives (Baum et al. 1973).

Acknowledgements. We wish to thank Etsuko Kinoshita for excellent technical assistance in histological work.

References

- Abelev GI, Perova SD, Khramkova NI, Postnikova ZA, Irlin IS (1963) Production of embryonal α-globulin by transplantable mouse hepatomas. Transplantation 1:174–180
- Abelev GI (1971) Alpha-fetoprotein in ontogenesis and its association with malignant tumors. Adv Cancer Res 14:295–358
- Alpert E (1972) Alpha-1-fetoprotein: serologic marker of human hepatoma and embryonal carcinoma. Natl Cancer Inst Monogr 35:415–420
- Baum JK, Bookstein JJ, Holtz F, Klein EW (1973) Possible association between benign hepatomas and oral contraceptives. Lancet II:926–929
- Dempo KN, Chisaka N, Yoshida Y, Kaneko A, Onoe T (1975) Immunofluorescent study on alpha-fetoprotein producing cells in the early stage of 3'-methyl-4-dimethylamino-azobenzene carcinogenesis. Cancer Res 35:1282–1287
- Diczfalusy E (1969) Steroid metabolism in the human foetoplacental unit. Acta Endocrinol (Kbh) 61:649-664
- Dougherty TF (1952) Effect of hormones on lymphatic tissue. Physiol Rev 32:379–401
- Engelhardt NV, Lazareva MN, Abelev GI, Uryvaeva IV, Factor VM, Brodsky VY (1976) Detection of α-fetoprotein in mouse liver differentiated hepatocytes before their progression through S-phase. Nature (London) 263:146–148
- Ezaki T, Nawa Y, Yamaguchi K, Kotani M (1982) Modulation of the immune responses against SRBC after oestriol treatment in mice. Clin Exp Immunol 48:239–243
- Fujii H, Hayama T, Kotani M (1985) Stimulating effect of natural estrogens on proliferation of hepatocytes in adult mice. Acta Anat 121:174–178
- Fujii H, Kotani M (1986) Promoting effect of estrogen on regeneration of the liver transplanted to an ectopic site in mice. Virchows Arch (Anat Pathol) 409:453–460
- Hayama T, Nawa Y, Ezaki T, Kotani M (1983) Effects of estrogen on hepatic hemopoiesis in the adult mouse. Exp Hematol 11:611-617
- Hayama T, Nawa Y, Kotani M (1985) Granulocyte-macrophage colony-stimulating activity in the serum of estrioltreated mice. Exp Hematol 13:658–663
- Heyderman E, Neville AM (1977) A shorter immunoperoxidase

- technique for the demonstration of carcinoembryonic antigen and other cell products. J Clin Pathol 30:138-140
- Kley HK, Krüskemper HL, Keck E (1976) Estrone and estradiol in patients with cirrhosis of the liver: effects of ACTH and dexamethasone. J Clin Endocrinol Metabol 43:557–560
- Kuhlmann WD (1978) Localization of alpha-fetoprotein and DNA-synthesis in liver cell populations during experimental hepatocarcinogenesis in rats. Int J Cancer 21:368–380
- Lehmann FG (1976) Prognostic significance of alpha-fetoprotein in liver cirrhosis five-year prospective study. In: Fishman WH, Sell S (eds) Onco-Developmental Gene Expression. Academic Press, New York, p 407
- McIntire KR, Vogel CL, Princler GL, Patel IR (1972) Serum α-fetoprotein as a biochemical marker for hepatocellular carcinoma. Cancer Res 32:1941–1946
- Nicol T, Bilbey DLJ, Charles LM, Cordingley JL, Vernon-Roberts B (1964) Oestrogen; The natural stimulant of body defence. J Endocr 30:277–29
- Nishi S, Hirai H (1972) Purification of human, dog and rabbit α-fetoprotein. Biochim Biophys Acta 278:293–298
- Okuda K, Kotoda K, Obata H, Hayashi N, Hisamitsu N, Tamiya M, Kubo Y, Yakushiji F, Nagata E, Jinnouchi S, Shimokawa Y (1975) Clinical observations during a relatively early stage of hepatocellular carcinoma, with special reference to serum alpha-fetoprotein levels. Gastroenterology 69:226-234
- Roy EJ, Brown JB (1960) A method for the estimation of oestriol, oestrone and oestradiol-17 β in the blood of the pregnant woman and of the foetus. J Endocr 21:9–23
- Ruoslahti E, Seppälä M (1971) Studies of carcino-fetal proteins.

 Development of a radioimmunoassay for α-fetoprotein.
 Demonstration of α-fetoprotein in serum of healthy human adults. Int J Cancer 8:374–383
- Ruoslahti E, Salaspuro M, Pihko H, Anderson L, Seppälä M (1974) Serum α-fetoprotein; Diagnostic significance in liver disease. Br Med J 2:537–529
- Sell S, Nichols M, Becker FF, Leffert HL (1974) Hepatocyte proliferation and α_1 -fetoprotein in pregnant, neonatal and partial hepatectomized rats. Cancer Res 34:865–871
- Sell S, Morris HP (1974) Relationship of rat alpha-1-fetoprotein to growth rate and chromosome composition of Morris hepatomas. Cancer Res 34:1413–1417
- Sell S, Becker FF (1978) alpha-Fetoprotein. J Natl Cancer Inst 60:19-26
- Smuckler EA, Koplitz RM, Sell S (1976) alpha-Fetoprotein in toxic liver injury. Cancer Res 36:4558-4561
- Stefanini M, De Martino C, Zamboni L (1967) Fixation of ejaculated spermatozoa for electron microscopy. Nature (London) 216:173-174
- Taga H (1983) The effect of active immunization of rat with heterologous α-fetoprotein upon hepatocarcinogenesis induced by 3'-methyl-4-dimethylaminoazobenzene. Gann 74:248–257
- Tchipysheva TA, Guelstein VI, Bannikov GA (1977) α-Fetoprotein-containing cells in the early stages of liver carcinogenesis induced by 3'-methyl-4-dimethylaminoazobenzene and 2-acetylaminofluorene. Int J Cancer 20:388–393
- Watabe H, Hirai H, Satoh H (1972) α-Fetoprotein in rats transplanted with ascites hepatoma. Gann 63:189–199
- Watanabe A, Miyazaki M, Taketa K (1976) Differential mechanisms of increased alpha-1-fetoprotein production in rats following carbon tetrachloride injury and partial hepatectomy. Cancer Res 36:2171–2175